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Abstract
In this talk, we have reviewed the recent development on the time evolution of lepton family number
carried by Majorana neutrinos [1]. This article focuses on the subtle points of the derivation of the lepton
family numbers and their time evolution. We also show how the time evolution is sensitive to mee and meµ

components of the effective Majorana mass matrix by applying the formula to the two family case. The
dependence on the Majorana phase is clarified and the implication on CNB (cosmic neutrino background)
is also discussed.
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1. INTRODUCTION
The properties of neutrinos have not been fully understood yet. The following items are what we wish to address through our
research. One central question is that whether neutrinos are Majorana [2] or Dirac [3] particles and how one can discriminate them.
The nature of Majorana neutrinos is more pronounced at very low momentum |q| < mν. The temperature of CNB is expected to
be as low as TCNB ' 2K ∼ 2× 10−4 (eV). In such low temperature, even the neutrinos with the mass of order of mν = 10−3 (eV)
are non-relativistic.

If the neutrinos are Majorana particle, the lepton number is not a conserved quantity. Traditionally, the lepton number violation
through the Majorana mass [4] [5] [6] [7] and the lepton family number violation via neutrino oscillation [8] have been discussed
separately. The Majorana mass term generates the lepton number violation and it can lead to the neutrino-less double beta decay
[9]. The process occurs through the chirality flip of the Majorana neutrinos and its rate is suppressed as the neutrino’s energy is
about a few MeV for the typical Nuclear reaction process. On the other hand, for the neutrino flavor oscillation, which is observed
as the non-conservation of the charged lepton family numbers, the chirality flip is not relevant for the relativistic neutrinos and the
neutrino oscillation formula has been derived without the effect. It is known that in the relativistic limit, the common formula of the
neutrino flavor oscillation holds for both Dirac neutrinos and Majorana neutrinos and the CP asymmetry is insensitive to Majorana
phases [10], [11], [12]. In the relativistic regime, one can not discriminate either Dirac or Majorana neutrino. By considering the fact
that the temperature of CNB is comparable to the neutrinos mass with 10−4(eV), it is desirable to formulate the lepton number
violation and the lepton flavor violation in a single framework which is valid even in the non-relativistic region. In our previous
work [1], such framework has been developed for Majorana neutrino and the formula for time variation of lepton number which
is valid for the wide range of the momentum, i.e., from the relativistic case to non relativistic one, was derived. In the framework,
the lepton family number operators in the Heisenberg representation were derived by turning on the Majorana mass term in the
Hamiltonian at t = 0. This set up enables us to link the operators in the family basis to the operators in the mass basis. Then one
can investigate the time evolution of the lepton family number operators under the presence of the Majorana mass terms. See also
[13] [14] on the effect of the chirality flip of the Dirac neutrino and the implication on CNB.

In this paper, we review the paper by highlighting the subtle point of the derivation of the time dependent lepton numbers. That
is the continuity condition which relates the operator for chiral left-handed massless neutrino with the definite family number e, µ,
and τ to the massive Majorana neutrino with the definite mass. We also apply the formula to the case with two family of neutrinos
(electron and muon neutrinos). The study of the simplified toy model is useful to understand how the time dependent lepton
family numbers depend on the Majorana phase, the absolute value of the neutrino masses, and the momentum of the neutrinos.
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2. THE EXPECTATION VALUE OF THE LEPTON NUMBER OPERATOR AND HOW THE
LEPTON NUMBERS ARE COUNTED THROUGH THE PRODUCTION AND THE DETEC-
TION OF (ANTI-)NEUTRINOS.

To illustrate our set up, we start this section with a brief historical introduction from the view point of the lepton number violation.
Bruno Pontecorvo [15] suggested the process which might be useful to detect the reactor neutrinos. The proposed process is given in
the second line of Eq.(1) . In this idea, the neutrino from the reactor is supposed to be absorbed by Cl34

17 and it subsequently decays
into Ar34

18. Raymond Davis Jr. tried to observe the process and set an upper limit of the capture cross section [16]. If the reactor
neutrino were an electron neutrino, the absorption process can occur. However the reactor neutrino is an anti-electron neutrino
and the absorption process with the electron production is forbidden by the electron number conservation. With the analogy with
K0 and K̄0 mixing, Pontecorvo [4] reached to the idea of ν̄e → νe oscillation ( neutrino-anti-neutrino oscillation ) and showed the
process can occur if the neutrino is a Majorana particle as seen in Eq.(2)

n→ p + e−+ ν̄e reactor (anti-)neutrino

↘
ν̄e + Cl34

17 → Ar34
18 + e−. (1)

n→ p + e−+ ν̄e reactor (anti-)neutrino

↘
νe + Cl34

17 → Ar34
18 + e−. (2)

Since the reactor anti-neutrino has the energy of the order of MeV and is relativistic, the anti-neutrino to neutrino transition is
strongly suppressed by a factor of the neutrino mass over the energy. Therefore the process such as Eq.(2) could not be observed.

In Fig.1, we illustrate how the expectation value of electron number operator 〈νe|Le(t)|νe〉 evolves with respect to time for the
case that the electron neutrino is produced at t = 0 and anti-neutrino is detected at time t. The neutrino’s source is the charged
pion decay π+ → π0e+νe. The anti-electron neutrino is detected with the inverse β+ decay ν̄e + YZ

A → e+ + WZ
A−1.

π+

〈νe|Le(0)|νe〉 = 1

〈νe|Le(t)|νe〉 = −1

π0

e+

νe
ν̄e

e+

WZ
A−1YZ

A

t

Figure 1: The production of electron neutrino and the detection of anti-neutrino through charged current interaction. This figure
illustrates how the expectation value of the electron number operator evolves with respect to time. We have not observed neutrinos
directly and the whole process including the production and the detection corresponds to π+ +YZ

A → π0 + e+ +(νe → ν̄e)+YZ
A →

π0 + e+ + WZ
A−1 + e+.

3. LEPTON FAMILY NUMBER CARRIED BY MAJORANA NEUTRINOS
Lepton family number ( electron number, muon number, and tauon lepton number) are assigned to SU(2) doublet of the three
families. Since Majorana neutrino is a neutral particle, one can not assign the particle number associated with U(1) charge. The
situation is similar to the neutral scalar field which is described by a single component Hermitian field. The phase transformation
on the neutral scalar is not allowed. This is in contrast to the complex scalar field [17] [18]. For The Dirac fermion which is similar to
the complex scalar field, the fermion number can be defined with the time component of the vector current. However, if we do not
restrict ourselves to the charge associated to the vector current, even for the Majorana field, one can still define the family charge.
A Majorana field is written as a superposition of the left-handed chiral field and its charge conjugation.

ψM = νL + (νL)
c. (3)

Then one can define the lepton family charge of the left-handed neutrino as,

L =
∫

d3x : ν̄Lγ0νL : . (4)
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Since only the left-handed neutrinos interact through weak interaction, we assign a lepton family number to the SU(2) doublet of
each generation where the charged leptons mass matrix is a real diagonal one.(

νeL

eL

)
,
(

νµL

µL

)
,
(

ντL

τL

)
. (5)

The neutrino family eigenstates are not observed directly. The family eigenstate of neutrino is tagged by the flavor of the charged
lepton which decays or is produced together with the neutrino in the charged weak interaction process. Therefore the lepton family
number carried by the neutrino is written in terms of the left-handed chiral field,

Lα =
∫

: ναLγ0ναL : d3x, α = e ∼ τ, (6)

where the normal ordered product must be taken.

4. THE CONTINUITY CONDITION AND TIME EVOLUTION
We study the evolution of the lepton family number operators in the Heisenberg representation. We have the following situation
in mind. When the weak charged current interaction produces the neutrino, we assume that the neutrino is produced as a Iw = 1

2
partner of SU(2) doublet of the charged lepton. This corresponds to the following Lagrangian:

L = νLαiγµ∂µνLα − θ(t)
1
2
{mαβ(νLα)c(νLβ) + h.c.} (7)

Note that the mass term is turned at t = 0 with the step function. We introduce the mass eigenstates ψi(i = 1 ∼ 3) so that the mass
matrix given in the family basis is diagonalized by an unitary matrix V,

(VT)iαmαβVβj = miδij,

mαβ =
3

∑
i=1

V∗αimiV∗βi, (8)

with

νLα = VαiPLψi, PL =
1− γ5

2
. (9)

Below we explain the continuity condition. The equation of motion from the Lagrangian is,

γµ∂µνLα = −iθ(t)m∗αβ(νLβ)
c. (10)

The time derivative of the field is given as,

∂

∂t
νLα = −γ0γi ∂

∂xi νLα − iθ(t)m∗αβγ0(νLβ)
c. (11)

We integrate the both side of the above equation with respect to time as,∫ ε

−ε
dt

∂νLα

∂t
= −

∫ ε

−ε
dtγ0γi ∂

∂xi νLα − i
∫ ε

0
dtγ0m∗αβ(νLβ)

c, (12)

where the dependence on the space coordinate x is suppressed. By integrating the equation, one obtains,

νLα(t = ε)− νLα(t = −ε) = −
∫ ε

−ε
dtγ0γi ∂

∂xi νLα − i
∫ ε

0
dtm∗αβ(νLβ)

c. (13)

At this stage, one can take the limit ε→ +0 and obtains the continuity condition.

ναL(t = +0, x) = ναL(t = −0, x). (14)

The left hand-side can be written with the mass basis introduced in Eq.(9) through

ναL(t = +0, x) = PLVαiψi(t = +0, x), (15)

where PL = 1−γ5
2 . Then one can relate the operator for massless left-handed one to chiral projection of the massive operator which

satisfies (ψi)
c = ψi.

ναL(t = −0, x) = PLVαiψi(t = +0, x). (16)
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Note that the left-hand side of Eq.(16) is expanded with the annihilation operator of the neutrino ( aα(q) ) and the creation operator
for anti-neutrino ( b†

α(q) ) for α = (e, µ, τ) family. The right-hand side is written in terms of the superposition of the creation and
annihilation operators (aMj(q, λ), j = 1 ∼ 3) for the Majorana fields with the definite masses (mj) and the helicities (λ = ±).
There is a subtle point of the momentum q carried by the neutrinos. In the left-hand side of Eq.(16) , q = 0 is absent because zero
momentum massless neutrino does not carry the energy. This in turn implies the absence of zero (q = 0) mode for the left-hand
side of Eq.(16). The continuity condition demands the absence of zero momentum mode for the massive Majorana operator as well.
This allows us to expand the massive Majorana field with the creation and annihilation operators with the definite helicity denoted

as a(†)Mi (q,±). Since zero momentum is excluded, one can split the entire momentum region of the non-zero momentum {q : q 6= 0}
into two regions called A and Ā as shown in Fig.2. By writing the direction of the momentum n = q

|q| with the polar angles θ and
φ, the light blue-colored hemisphere in Fig.2 corresponds to the region where the azimuthal angle φ lies within the range [0, π).
This region is named A region in [1]. The other green-colored hemisphere corresponds to φ within [π, 2π) and is named the region
Ā. For the momentum q which lies in the A region, the relations of the operators in family basis and those in mass basis are given
as,

aα(q)√
2|q|

=
3

∑
j=1

Vαj

√
Nj(q)

2Ej(q)

(
aMj(q,−) +

imj

Ej(q) + |q|
a†

Mj(−q,−)
)

, (17)

aα(−q)√
2|q|

=
3

∑
j=1

Vαj

√
Nj(q)

2Ej(q)

(
aMj(−q,−)−

imj

Ej(q) + |q|
a†

Mj(q,−)
)

, (18)

where Nj(q) = Ej(q) + |q| and Ej(q) =
√
|q|2 + m2

j . The sign difference of the second terms of the right-hand side in Eq.(17) and

Eq.(18) is consistent with the anti-commutation,

{aα(q), aβ(−q)} = 0. (19)

The lepton family number operators defined in Eq.(6) can be rewritten as,

Figure 2: The regions of the momentum direction n = q
|q| . The hemisphere colored with the light blue represents the region A and

the other hemisphere colored with the green corresponds to the region Ā.

Lα(t = −0) =
∫ ′ d3q

(2π)32|q|

(
a†

α(q)aα(q)− b†
α(q)bα(q)

)
. (20)

where
∫ ′ implies that the zero momentum is excluded from the integration. The relations in Eq.(17) and Eq.(18) lead to the time

evolution of the creation and annihilation operators in the family basis. The explicit expression for aα(q, t) and bα(q, t) can be found
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in Eq.(30-33) of [1]. The lepton family number at t ≥ 0 is obtained by replacing aα(q)and bα(q) in Eq.(20) with aα(q, t)and bα(q, t),

Lα(t ≥ 0) =
∫ ′ d3q

(2π)32|q|

(
a†

α(q, t)aα(q, t)− b†
α(q, t)bα(q, t)

)
. (21)

Next we apply the obtained formula to two families case, i.e., the electron and the muon families and show the expectation
value of the electron and the muon number sandwiched with a state for a single electron neutrino with the momentum q,

|q, e)〉 = nqa†
e (q)|0〉, (22)

where the normalization constant nq is given by 1√
(2π)32|q|δ3(0)

. The vacuum is defined so that it is annihilated by the annihilation

operators of family basis,

aα(q)|0〉 = bα(q)|0〉 = 0. (23)

For the two family case, the mixing matrix is given as,

V =

(
c12 s12ei α21

2

−s12 c12ei α21
2

)
, (24)

where θ12 is a mixing angle, s12 = sin θ12, and c12 = cos θ12. α21 is a Majorana phase. The expectation value of the electron number
with respect to the electron neutrino state is,

〈q, e|Le(t)|q, e〉 = c4
12

(
1−

2m2
1 sin2(E1(q)t)

E2
1(q)

)
+ s4

12

(
1−

2m2
2 sin2(E2(q)t)

E2
2(q)

)

+ s2
12c2

12

{(
1 +
|q|2 −m1m2 cos(α21)

E1(q)E2(q)

)
cos(E1(q)− E2(q))t +

(
1− |q|

2 −m1m2 cos(α21)

E1(q)E2(q)

)
cos(E1(q) + E2(q))t

}
. (25)

Similarly one obtains the muon number,

〈q, e|Lµ(t)|q, e〉 = c2
12s2

12

[(
1−

2m2
1 sin2(E1(q)t)

E2
1(q)

)
+

(
1−

2m2
2 sin2(E2(q)t)

E2
2(q)

)

−
(

1 +
|q|2 −m1m2 cos(α21)

E1(q)E2(q)

)
cos(E1(q)− E2(q))t−

(
1− |q|

2 −m1m2 cos(α21)

E1(q)E2(q)

)
cos(E1(q) + E2(q))t

]
. (26)

One can also obtain the total lepton number 〈q, e|L(t)|q, e〉 = ∑
µ
α=e〈q, e|Lα(t)|q, e〉 and its upper and lower bounds as,

〈q, e|L(t)|q, e〉 = c2
12

(
1−

2m2
1 sin2(E1(q)t)

E2
1(q)

)
+ s2

12

(
1−

2m2
2 sin2(E2(q)t)

E2
2(q)

)

=
|q|2 + m2

1 cos 2E1(q)t
E2

1(q)
c2

12 +
|q|2 + m2

2 cos 2E2(q)t
E2

2(q)
s2

12,

−1 ≤
|q|2 −m2

1
|q|2 + m2

1
c2

12 +
|q|2 −m2

2
|q|2 + m2

2
s2

12 ≤ 〈q, e|L(t)|q, e〉 ≤ 1. (27)

The lower bound of the total lepton number in Eq.(27) occurs at |q| = 0 and it is −1. As |q| larger, it asymptotically reaches to +1.
By expanding the expectation value of electron number in Eq.(25) and muon number in Eq.(26) around at t = 0, one obtains the
following behavior,

〈q, e|Le(t)|q, e〉 ' 1− 2(|c2
12m2

1 + s2
12m2

2eiα21 |2)t2 − (m2
1 + m2

2 − 2m1m2 cos(α21))s2
12c2

12t2

= 1− 2|mee|2t2 − |mµe|t2,

= 1− |mee|2t2 − (m†m)eet2. (28)

〈q, e|Lµ(t)|q, e〉 ' −c2
12s2

12(m
2
1 + m2

2 − 2m1m2 cos α21)t2,

= −|mµe|2t2. (29)

where |mee|2 ,|mµe|2 and (m†m)ee are respectively given as,

|mee|2 = |m1c2
12 + m2s2

12e−iα21 |2, (30)
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Figure 3: Time dependence of lepton family numbers 〈e|Le(t)|e〉 and 〈e|Lµ(t)|e〉 for two family model. The lightest neutrino mass is
0.01 (eV) and the momentum of the neutrinos are |q| = 0.0002 (eV). The filled region corresponds to the change of a single Majorana
phase α21 within the range [0, π]. The mixing angle θ12 is chosen as sin θ12 = 0.551, cos θ12 = 0.834 and ∆2m21 = 7.42× 10−5(eV2).
The blue colored lines show the case with the Majorana phase α21 = 0 while the light brown colored lines show the case with
α21 = π.

|mµe|2 = |s12c12(m2e−iα21 −m1)|2, (31)

(m†m)ee = (V†m2V)ee = m2
1c2

12 + m2
2s2

12. (32)

In Fig.3 , we show the expectation values for electron number and muon number for two different values of Majorana phases
α21 = 0 and π. When Majorana phase is chosen as α21 = 0, |mee| is the maximum and |mµe| is the minimum as can be seen from
Eq.(30) and Eq.(31). For α21 = π, |mee| is the minimum and |mµe| is the maximum. The behavior of the electron number and muon
number in Fig.3 around t = 0 are consistent with the observation described above. The blue colored lines in Fig.3 show the case
with the Majorana phase α21 = 0 while the light brown colored lines show the case with α21 = π. In the latter case, the muon
number sharply decreases around at t = 0 and it implies large νe → ν̄µ conversion rate. For the case α21 = 0, the electron number
sharply decreases because of large |mee|. In Fig.4, we have shown the expectation values at specific time t = 0.66 (ps). The figure
shows the dependence on the Majorana phase is more significant as we lower the momentum.

10-4 0.001 0.010 0.100 1 10
-1.0

-0.5

0.0

0.5

1.0

q (eV)

Figure 4: The momentum q = |q| dependence of the expectation values at t = 0.66(ps). The yellow colored curve and the blue
colored curve show the muon numbers, i.e., 〈e|Lµ(t = 0.66)|e〉 for α21 = π and α21 = 0, respectively. The green colored curve and
the orange colored curve show the electron number, i.e., 〈e|Le(t = 0.66)|e〉 for α21 = 0 and α21 = π, respectively.
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5. SUMMARY AND IMPLICATION ON CNB
With the lepton family number, the neutrino flavor transition and the neutrino and anti-neutrino transition effects is included in
a single framework and the formula for time evolution of lepton numbers that is valid for the broad range of the momentum was
obtained [1]. We reviewed this approach by focusing on the definition of the lepton family numbers, the several subtle points of
the derivation such as the continuity condition and the momentum regions. We apply the formula to the two generation case of
neutrinos and show how the expectation values depend on the Majorana phase and their momentum. The effect of Majorana mass
term including the Majorana phase is more significant at the low momentum region q < mν.

The implication of the present work on the CNB can be summarized as follows. In the early universe, neutrinos’ momentum
is large and the lepton family numbers are approximately conserved. While the universe is cooled down, the momentum carried
by the neutrinos is red-shifted and they become non-relativistic. If the neutrinos are Majorana particles, the effects of Majorana
mass term is turned on, and the lepton number may oscillate and alternate its sign . These effects strongly depend on the Majorana
phases, neutrino masses as we have seen. See also [13] [14] on the effect of the chirality flip of the Dirac neutrino and the implication
on CNB.
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